Highlights


Invited topical review on electronic and magnetic properties of layered MPX3 materials

Y. Dedkov, Y. Guo, and E. Voloshina, “Progress in the studies of electronic and magnetic properties of layered MPX3 materials (M: transition metal, X: chalcogen)”, Electron. Struct. 5, 043001 (2023).

Structure and electronic properties of SrTiO3-TiO2 eutectic

Y. Guo, H. M. Zeeshan, M. Yan, W. Qin, W. Yang, S. Cao, Y. Dedkov, E. Voloshina, “Structure and electronic properties of SrTiO3-TiO2 eutectic for water splitting applications”, Adv. Energy Sustainability Res. 4, 202300136 (2023).

Easy and low-cost approach of graphene growth on Ir(111) and Ru(0001) from liquid ethanol

Y. Dedkov, J. Zhou, Y. Guo, E. Voloshina, “Easy approach to graphene growth on Ir(111) and Ru(0001) from liquid ethanol”, Adv. Mater. Interfaces 10, 02300468 (2023).

Realisation of the new graphene-ferromagnet interface with Dirac linear bands dispersion

Y. Dedkov, J. Yang, H. Hu, Y. Jin, M. Yan, Y. Jin, J. Zhou, E. Voloshina, “Realization of the new graphene-ferromagnet interface with Dirac linear bands dispersion”, ACS Appl. Mater. Interfaces 15, 26190 (2023).

First ARPES studies of van der Waals CoPS3 trichalcogenide

E. Voloshina, Y. Jin, and Y. Dedkov, “ARPES studies of the ground state electronic properties of the van der Waals transition metal trichalcogenide CoPS3“, Chem. Phys. Lett. 823, 140511 (2023).

A perspective article on semiconducting eutectic materials for photocatalysis and photoelectrochemistry applications

H. M. Zeeshan, S. Sharma, M. Panahi, E. Voloshina, and Y. Dedkov, “Semiconducting eutectic materials for photocatalysis and photoelectrochemistry applications: A perspective”, Phys. Chem. Chem. Phys. (2022).

The electric-field driven MPSe3-based magnetic tunnel junction

Y. Jin, M. Yan, Y. Dedkov, and E. Voloshina, “Realization of the electric-field driven “one-material”-based magnetic tunnel junction using van der Waals antiferromagnetic MnPX3 (X: S, Se)”, J. Mater. Chem. C 10, 3812 (2022).

Mott-Hubbard insulating state in FePX3 (X: S, Se): DFT, NEXAFS and ResPES studies

Y. Jin, M. Yan, T. Kremer, E. Voloshina, and Y. Dedkov, “Mott-Hubbard insulating state for the layered van der Waals FePX3 (X: S, Se) as revealed by NEXAFS and resonant photoelectron spectroscopy”, Sci. Rep. 12, 735 (2022).

First spectroscopic studies of the electronic structure of transition metal trichalcodenide material NiPS3

M. Yan, Y. Jin, Z. Wu, A. Tsaturyan, A. Makarova, D. Smirnov, E. Voloshina, and Yu. Dedkov, “Correlations in the electronic structure of van der Waals NiPS3 crystals: An x‐ray absorption and resonant photoelectron spectroscopy study”, J. Phys. Chem. Lett. 12, 2400 (2021)

Complete understanding of the alloy formation at the graphene-metal interfaces

E. Voloshina, B. Paulus, and Yu. Dedkov, “Graphene layer morphology as an indicator of the metal alloy formation at the interface”, J. Phys. Chem. Lett. 12, 19 (2021)

A timely overview of the state-of-the-art in the field of studies of the graphene-Ge epitaxial interfaces

Yu. Dedkov and E. Voloshina, “Epitaxial graphene/Ge interfaces: a minireview”, Nanoscale 12, 11416 (2020)

Giant spin-orbit splitting of the graphene valence band states due to hybridisation with spin-polarised quantum well states of underlying metal

T. Vincent, E. Voloshina, S. Pons, S. Simon, M. Fonin, K. Wang, B. Paulus, D. Roditchev, Yu. Dedkov, and S. Vlaic, “Quantum well states for graphene spin-texture engineering”, J. Phys. Chem. Lett. 11, 1594 (2020)

Dirac electron behaviour in the strongly interacting graphene/ferromagnet system

E. Voloshina and Yu. Dedkov, “Dirac electron behavior for spin-up electrons in strongly interacting graphene on ferromagnetic Mn5Ge3“, J. Phys. Chem. Lett. 10, 3212 (2019)

First realistic super-cell DFT calculations for graphene/high-Z-metal interfaces

E. Voloshina and Yu. Dedkov, “Realistic large-scale modeling of Rashba and induced spin–orbit effects in graphene/high-Z-metal systems”, Adv. Theory Simul. 1, 1800063 (2018)

First systematic studies of the graphene/Ge interface

J. Tesch, F. Paschke, M. Fonin, M. Wietstruk, S. Boettcher, R. Koch, A. Bostwick, C. Jozwiak, E. Rotenberg, A. Makarova, B. Paulus, E. Voloshina, and Yu. Dedkov, “The graphene/n-Ge(110) interface: structure, doping, and electronic properties”, Nanoscale 10, 6088 (2018)

Invited article in the Special Issue: The electronic structure of 2D and layered materials

Yu. S. Dedkov and E. N. Voloshina, “Spectroscopic and DFT studies of graphene intercalation systems on metals”, J. Electron. Spectrosc. Relat. Phenom. 219, 77 (2017)

Elastic properties of graphene nano drums on the atomic level

E. N. Voloshina and Yu. S. Dedkov, “Atomic force spectroscopy and density-functional study of graphene corrugation on Ru(0001)”, Phys. Rev. B 93, 235418 (2016)

Invited topical review on the graphene growth and properties on metal substrates

Yu. S. Dedkov and E. N. Voloshina, “Graphene growth and properties on metal substrates”, J. Phys.: Condens. Matter 27, 303002 (2015)

Feature article

Yu. S. Dedkov, E. N. Voloshina, and M. Fonin, “Scanning probe microscopy and spectroscopy of graphene on metals”, Phys. Status Solidi B 252, 451 (2015)

Universal model allowing to predict electronic structure of any graphene/metal system

E. N. Voloshina and Yu. S. Dedkov, “General approach to understanding the electronic structure of graphene on metals”, Mater. Res. Express 1, 035603 (2014)

Systematic application of the multireference incremental scheme for evaluation of cohesive properties of a bulk metal

E. Voloshina and B. Paulus, “First multireference correlation treatment of bulk metals”, J. Chem. Theory Comput. 10, 1698 (2014)

Invited perspective article

Yu. S. Dedkov and E. N. Voloshina: “Multichannel scanning probe microscopy and spectroscopy of graphene moiré structures”, Phys. Chem. Chem. Phys. 16, 3894 (2014)

Complete understanding of the imaging contrast in SPM of the graphene/metal interface

E. N. Voloshina, E. Fertitta, A. Garhofer, F. Mittendorfer, M. Fonin, A. Thissen, and Yu. S. Dedkov, “Electronic structure and imaging contrast of graphene moire on metals”, Sci. Rep. 3, 1072, (2013)

Invited perspective article

E. Voloshina and Yu. S. Dedkov, “Graphene on metallic surfaces: problems and perspectives”, Phys. Chem. Chem. Phys. 14, 13502 (2012)

The adsorption of water on graphene is studied by means of the CCSD(T) method

E. Voloshina, D. Usvyat, M. Schütz, Yu. S. Dedkov, and B. Paulus, “On the physisorption of water on graphene: a CCSD(T) study”, Phys. Chem. Chem. Phys. 13, 12041 (2011)

Invited article in the Special Issue: Focus on Chemically Modified Graphene

Yu. S. Dedkov and M. Fonin, “Electronic and magnetic properties of the graphene-ferromagnet interface”, New J. Phys. 12, 125004 (2010)

Induced magnetic moment of the π-electrons of carbon atoms in the graphene layer

M. Weser et al., “Induced magnetism of carbon atoms at the graphene/Ni(111) interface”, Appl. Phys. Lett. 96, 012504 (2010)

Origin of a pseudo gap in the DOS of orthorhombic gallium

E. Voloshina, K. Rosciszewski, and B. Paulus, “First-principles study of the connection between structure and electronic properties of gallium”, Phys. Rev. B 79, 045113 (2009)

First demonstration of the protective properties of graphene

Yu. S. Dedkov, M. Fonin, and C. Laubschat, “A possible source of spin-polarized electrons: The inert graphene/Ni(111) system”, Appl. Phys. Lett. 92, 052506 (2008)

First demonstration of the Rashba effect in graphene on metal

Yu. S. Dedkov, M. Fonin, U. Rüdiger, C. Laubschat, “Rashba effect in the graphene/Ni(111) system”, Phys. Rev. Lett. 100, 107602 (2008)

Surface magnetism of a paramagnetic YCo2

Yu. S. Dedkov, C. Laubschat, S. Khmelevskyi, J. Redinger, P. Mohn, and M. Weinert, “YCo2: Intrinsic magnetic surface of a paramagnetic bulk material”, Phys. Rev. Lett. 99, 047204 (2007)

Evidence for the half-metallic ferromagnetic state of Fe3O4

Yu. S. Dedkov, U. Rüdiger, and G. Güntherodt, “Evidence for the half-metallic ferromagnetic state of Fe3O4 by spin-resolved photoelectron spectroscopy”. Phys. Rev. B 65, 064417 (2002)

Weakening of chemical bonding between graphene and Ni(111) due to the copper intercalation

Yu. S. Dedkov et al., “Intercalation of copper underneath a monolayer of graphite on Ni(111)”, Phys. Rev. B 64, 035405 (2001)